C++2MPI/PGMT Integration

by
Roger Hillson

Revised 23 July 2002

The Processing Graph Method Tool (PGMT) product is being released under the
GNU General Public License Version 2, June 1991 and related documentation
under the GNU Free Documentation License Version 1.1, March 2000.
http://www.gnu.org/licenses/gpl.html

1. Introduction

In PGM, the basic data structure is a hierarchical entity called a PGM family. PGM families are
strongly-typed. Each PGM family has some specified base-type or leaf-node type. Although the
PGM specification is language-independent, PGM is always implemented in some specific
high-order language (HOL). A PGM user can define his own family base-types, and/or he can use
predefined base-types corresponding to the predefined types in the PGM high-order language
(HOL). PGMT proper is implemented in C++. In the PGMT environment, a user can define a
base-type for a PGM family by specifying a C++ class. A user can also define a family whose
base-type is a predefined C++ arithmetic datatype: for example, int, float, double, or long.

PGMT includes a library of Middleware. The Middleware library includes message-passing
functions which can be called by functions in the Graph Class Library (GCL) or PEP (PGMT
Execution Program). All of the Middleware communication functions use calls to MPI 1.1.
(Message Passing Interface 1.1) function libraries to send and receive data. The MPI function
calls are hidden from the GCL and PEP function calls. In order to call an MPI function to send or
receive data, the MPI datatype for the data must be specified. (Note: in accordance with the MPI
1.1. specification, "datatype” is spelled as a single word.) To specify the MPI datatype of the data
being sent or received, it is necessary to pass an MPI handle as an argument to the MPI function
being called. An MPI handle is an opague object of type MPI_Datatype. In order to use MPI to
pass instances of PGM families i.e. PGM tokens containing families, there must be an MPI
handle corresponding to the base-type of the PGM family.

PGMT is atool which accepts one or more C++ classes as inputs, and then generates a function
which will build the corresponding MPI datatype for the class. The function returns a handle to
the MPI datatype. Thus C++2MPI permits a user to automatically create MPI types for sending
and recelving instances of C++ classes.

2. MPI and PGM datatypes

There is a distinction between the MPI handle for a datatype, and the underlying datatype itself.
An MPI datatype is basically a memory map, consisting of ordered pairs of MPI datatypes and
their offsets in bytes from the beginning of a hypothetical send/receive buffer. By definition, an
MPI datatype is a list of ordered pairs of the form (C type, buffer_offset). Thislist is called a

typemap.

The MPI specification notes that, in an inefficient implementation of MPI, the typemap itself
could be passed as the MPI handle. In practice, the MPI handle (i.e. objects of type
MPI_Datatype) is usualy an index or pointer to the memory map, rather than the memory map

itself. In the free MPI implementation MPICH, MPI handles are simply enumerated types with
some integer value. In the MPI implementation LAM, MPI handles are pointers to C structures
(structs). From the standpoint of C++2MPI, the implementation details for objects of type
MPI_Datatype do not matter, although it is helpful to understand the above considerations.

MPI provides predefined datatypes for common C datatypes. For example, MPI_INT is the
predefined MPI handle for sending and receiving integers, and MPl_FLOAT is the predefined
MPI handle for sending and receiving floats. PGMT defines base-types as objects of type
MW _Datatype. In PGMT, MW _Datatype is type-defined as an object of type MPI_Datatype. By
defining the type MW_Datatype, the use of MPI is hidden at the level of the PEP and GCL.
Alternative middleware libraries could be written which do not use MPI for the communication
calls, but the GCL and PEP middleware interfaces would remain unchanged.

3. C++2MPI assumptions

C++2MPI enables a PGMT user to automatically create an MPI datatype corresponding to some
user-defined C++ class. Given the C++ class as an input, C++2MPI creates a function which,
when compiled and called, returns an MPI handle (object) of type MPI_Datatype. In order to
send or receive an instance of the user-defined class, the MPI handle must be passed as an
argument to the MPI function being called e.g. MPI_Send() or MPI_Receive(). The current
C++2MPI script also compiles and archives the functions which will create the MPI datatypes.
The creation of an archive library creates some OS-specific dependencies; this issue will be
addressed elsewhere.

(1) C++2MPI accepts as inputs:

(a) User class definitions for simple, derived, nested or templated classes. The class definitions
must be properly delimited by #pragma statements. User-defined types containing pointers, static
types, or unions are not supported.

(b) In the case of templated classes only, the user must also provide a type definition (typedef) for
each distinct instantiation of the templated class.

(2) C++2MPI produces two output files: C++2MPLh and C++2MPI.cpp. These files contain the
prototypes and function bodies for the MPI datatype build functions. When called, the build
functions return an object of type MPI Datatype for each of the user-specified base-types.
C++2MPI compiles the functions for building the user-defined MPI datatypes into an archive file
1ibC++2MPI. a.

(3) To support the use of these datatype-building functions, C++2MPI also generates an auxiliary
program MPIBuildFunc.cpp. This file defines the following pair of objects for each
user-defined MPI datatype:

» a handle for each user-specified datatype. The handle is declared as an object of type
MPI_Datatype.

» the address of the datatype-building function which returns the value of the corresponding
datatype handle.

4. Run-timeidentification of middlewar e datatypes

Assume that C++2MPI has been run with one or more user-defined C++ classes as inputs. The
functions for creating the user-defined types have been compiled into an archive. How does
PGMT determine which MPI datatype to use when sending or receiving a family of some PGM
base-type? The answer is that the PGMT GSF-to-C++ translator generates calls to the function
Machine::getMW_DataType(string) (see Figure 1). The function returns a handle of type
MW_Datatype, which is type-defined to MPI_Datatype.

The prototype for this function is:

typedef MPI_Datatype MW _Datatype;
MW_Datatype getMW_DataType(string arg);

A fragment of output from the PGMT Trandator might be:

MW_Datatype MW_Int, MW _Float, MW_Complex;

MW._Int = getMW_DataType("int"); /I predefined type
MW_Float = getMW_DataType("float"); /I predefined type
MW_Complex = getMW_DataType("complex"); /I user-defined type

The key PGMT/C++2MPI integration issue is to build the function
Machine::getMW_DataType(). This function must always return the proper handle for any
predefined MPI datatype. It must also return the MPI datatype for any user-defined datatype. The
function Machine::getMW _DataType() uses an associative map instantiated from the standard
template library (STL). The key for each record is the name of the datatype, and the value
returned is the address of the function which will build the datatype. This approach provides a
uniform interface: for each predefined or user-defined datatype, a function must exist which will
return an MPI handleto it.

4. Building getMW_DataType(string arg);

4.1 MPIBuildFunc.cpp C++2MPI generates an auxiliary file MPTBuildFunc.cpp which
contains the definitions for an STL vector of structures. There is one structure defined for each
user-defined type (i.e. class) provided by the user. Each structure has two components:; the name
of the user-defined type (i.e. class name) and the address of the function used to build the
corresponding MPI datatype. For example, if a user defines a class hamed complex, the two
components of the corresponding structure will be:

D string(“ complex”);
()] &build_complex_ MPI_datatype;

The first time the function build_complex MPI_datatype() is called it builds the MPI datatype for
the user-defined class complex, and returns an MPI handle of type MPI_Datatype. On subsequent
calls to build_complex MPI_datatype(), the function returns the correct value of the MPI handle
without rebuilding the MPI datatype.

MyList.h
hfiles = Make.mtool
MyClass1.h
MyClass2.h

> C++2MPL.h

User-defined MyCIassl.mp?.cpp
C++ classes: MyClass2.mpi.cpp

MyClass1.h C++2MPI script ¢

MyClass2.h
efc. [C++2MPl.a]7

MPIBuildFunc.cpp
PGMT
Application
Makefile
MPIBuildIntrinsicFunc.cpp
y
Machine::getMW_DataType.cpp [—
PGMT GUI PGMT Translator
y
Application-specific C++ source code »
with calls to »] C++ (GNU g++) Compiler
Machine::getMW_DataType(string)

PGMT Object
Libraries

C++ Linker <

4)

PGMT Executable Image

-)

Figure 1: PGMT/C++2MPI Integration

Assume that a user has defined two different classes defining a complex variable. The name of
the first class is "complex" and the name of the second class is "fcomplex." The complete
C++2MPI output file MPIBuildFunc.cpp is:

T T T e e i i n
///1//1//////7///// MP1BuildFunc.cpp //////////////

#include "C++2MPI aux.h"

void const GetC++2MPIVector (vector<record> &DFunc)
{

struct record item;

Dfill ("complex", build complex MPI datatype);
Dfill ("fcomplex", build fcomplex MPI datatype);

}

T e T i n

Dfil1 is a macro. After macro expansion by the C++ preprocessor, the output file
MPIBuildFunc.cpp is:

T e e e i i n

// Preprocessor output from MPIBuildFunc.cpp
// 'mpiCC -E MPIBuildFunc.cpp'
// This demonstrates the Ifill/Dfill macro expansion

// DFunc.push back(item) inserts an instance of the structure
// item into the vector DFunc

void const GetC++2MPIVector (vector<record> &DFunc)
{

struct record item;

extern MPI Datatype build complex MPI datatype ();
item.x = string("complex");
item.y = &build complex MPI datatype;

DFunc.push back (item) ;

extern MPI Datatype build fcomplex MPI datatype ();
item.x = string("fcomplex");
item.y = &build fcomplex MPI datatype;
DFunc.push back (item) ;

}
T T T e i nn

MPIBuildFunc.cpp contains a function GetC++2MPIVector(vector<record> &DFunc).
When this function is called, it returns the vector of structures required to build an STL
associative map. The map keys are the class names, and the values returned are the function
addresses. The map also includes functions which return the predefined MPI datatypes (handles)
for the basic C++ arithmetic types. For example, inf is the key to a function which will the value
of MPI_INT. The associative map is accessed via a function call to getMW Datatype() generated

by the PGMT GSF-to-C++ translator.

4.2 MPIBuildFunc.cpp A default version of the file MPTBuildFunc. cpp is provided with
PGMT libraries. The default file is provided so that the Middleware libraries can be compiled and

linked without first running C++2MPI.

This is a default file which I have added and committed to CVS. MPIBuildFunc.cpp contains the
function void const GetMtoolVector(vector<record> &DFunc).) The method

Machine::getMW Datatype() calls GetMtoolVector() the first time

Machine::getMW Datatype()itself is called. When called, GetMtoolVector() loads the keys and
values for the user-defined types into map<.

The default MPIBuildFunc.cpp contains a no-op version of GetMtoolVector().

Machine::getMW Datatype() can therefore be compiled and executed even if the user doesn't
execute C++2MPI, an action which would explicitly create MPIBuildFunc.cpp. If the user does
execute C++2MPI, C++2MPI will create the non-default MPIBuildFunc.cpp file, and copy this
file to the Middleware directory, overwriting the default file MPIBuildFunc.cpp.

V. The PGMT directory structure:

/IPGM2
y y y
lapps fobj = Isrc
PP H$OBJROOT}
y y y
=== ITestDataType /égtélr\?l;slio:;n /Middleware
| T
Makefile for the user-defined :
application TestDataType. |
y y
|
lappsrc Ilib |
I |
| |
I I
| |
y y y I
|
ICP /Graph /Primitives | :
I I : |
| | | |
| | . I
CmdProg.h; Makefile.mtool; libC++2MPl.a MPIBuildFunc.cpp
CmdProg.cpp; MyList.h (user-defined); (copied from /Graph); (copied from /Graph);
Makefile; phone.h (user-defined); MPIBuildIntrinsicFunc.cpp;

Machine::getMW_DataType.cpp;

Figure 2: PGMT / C++2MPI Directory Structure for a PGMT Application
with a User-Defined Type.

Figure 2 illustrates the PGMT directory structure for the example TestDataType. The file phone.h
defines the user-defined class for which PGMT requires an MPI datatype. MyList.h contains the
list of class files for the user-specified types — in this case, phone.h. Note that the files which the
user must provide or modify are in the subdirectory /TestDataType. The files in /obj and /src
should not require modification. Directories containing new user applications will be
subdirectories of /apps, asis /TestDataType. MPIBuildFunc.cpp is created in the directory /graph
when C++2MPI is executed, and is then copied (by the Makefile) to /Middleware.

The makefile Makefile.mtool in /Graph copies the C++2MPI output file
'MPIBuildFunc.cpp' from /graph to the /Middleware directory, and copies the C++2MPI output
archive 11bC++2MPI.a from /graph to /lib.

The functionality of Makefile.include indirectory /PGM2/appsis aso worth summarizing.

Check to see if the C++2MPI output archive LibC++2MPla exists. Link with
libC++2MPI.a if the archive exists; omit this archive from the link library list if
LibC++2MPlLa does not exist. The archive, if it exists, will be 1in
${OBJROOT}/${PGM2_HOST}/lib/libC++2MPI.a.

VI. C++2MPI examples:

PGMT provides an additional file MPIBuildIntrinsicFunc.cpp defining the handles,
function addresses, and function bodies for returning the MPI handles for the predefined MPI
datatypes. See Appendix A and B.

Note: if a class is a base-type for a derived class which defines the PGM base-type, a function
will be returned for the building the MPI datatype for the base class, but the user does not need to
call this function. There will always be a terminal function which the user must call to build a
base-type for the desired class; this terminal function may itself call other datatype-building
functions to build pre-requisite derived datatypes.

The name of the function for building a derived datatype is the mangled name of the base-type
class, or the template signature(s).

Representative input and output files for C++2MPI follow. See the C++2MPI documentation by
Michal Iglewski for additional examples.

Example 1: Smple PGM family basetype class. Note use of pragmas to delineate the user-
defined class:

// User input file demol.h
// file demol.h

#pragma MPI START

class demol {
public:
int x1;
int x2;
double z;

demol () { }
demol (int x1 , int x2 , double =z)

{

x1l = x1 ;
X2 = X2 ;
zZ =2z ;

}

~demol () {}

}s

10

C++2MPI output prototype file C++2MPI.h. For the sake of brevity, the output file
C++2MPI.cpp which contains the function body is not shown.

/177777777 £ile C++2MPI.hW////////// 1/ /7777777777777

#ifndef CPP2MPI
#define CPP2MPI

MPI Datatype AIT build demol MPI datatype();

#endif

Usage:

/* Declare user-defined datatype demol MPI handle

and create it by calling AIT build demol MPI datatype() */
MPI Datatype demol MPI handle;
demol MPI handle = AIT build demol MPI datatype();

Example 2: base class and derived class.
// Extract from user input file

class base v(){...}; // user-defined
class derived v(){...); // user-defined

/* prototypes generated by C++2MPI; function bodies are not
shown. */

MPI Datatype AIT build base v MPI datatype(); //C++2MPI out
MPI Datatype AIT build derived v MPI datatype();// C++2MPI out

// Usage:

MPI Datatype derived v MPI handle;
derived v_MPI handle = AIT build derived v MPI datatype();

/* Note that the function AIT build derived v MPI datatype ()
calls the function AIT build base v MPI datatype()internally.

The base class function does not have to be called from within
the PGMT C++ source code. */

11

Example 3: templated class for user-defined PGM family basetype. Each permissible
combination of input parameters must be type-defined by the user.

User-defined input file:

//file Nemo.h
#pragma MPI START

template <class T> class Nemo {public: T x; T y;};

typedef Nemo<int> NI;
typedef Nemo<float> NF;

C++2MPI output prototype file C++2MPI.h. Function bodiesin C++2MPI.cpp are not shown.
/1711777777777 // £ile C++2MPI.h//////////////////////////

#ifndef CPP2MPI
#define CPP2MPI

MPI Datatype AIT build Nemo int MPI datatype();
MPI Datatype AIT build NI MPI datatype();

MPI Datatype AIT build Nemo float MPI datatype();
MPI Datatype AIT build NF MPI datatype();

#endif
// end C++2MPI.h

Notice that C++2MPI builds a prototype for the type-defined variables NF and NI,
aswell asfor Nemo<float> and Nemo<int>.

Thefunction Datatype AIT build NI MPI datatype () isactualy awrapper for a
functioncall to build Nemo int MPI datatype() i.e.

// code fragment from the C++2MPI output file C++2MPI.cpp:

// Build an MPI Datatype for the type 'NI'
MPI Datatype AIT build NI MPI datatype()

{

return AIT build Nemo int MPI datatype();
} // end AIT build NI MPI datatype function

Usage:

MPI Datatype NI MPI handle;
derived v _MPI handle = AIT build NI MPI datatype();

1. Summary of the C++2MPI name-mangling algorithm

I am providing this information for reference. PGMT/C++2MPI users do not have to be
concerned with this algorithm.

i. For a simple (non-templated) class, the class name is inserted into the function name.
class MyClass(); // user-defined base type MyClass

// Prototype for MPI datatype building function
MPI Datatype AIT build MyClass MPI datatype();

ii. If the user's class is a derived datatype, a build function must be provided for the base type, as
well as the derived type. For example, assume there is user-specified base class base_v(), and a

user-specified derived class derived_v(). The prototypes for the build functions are:

MPI Datatype AIT build base v MPI datatype();
MPI Datatype AIT build derived v MPI datatype();

iii. Nested classes.

For nested, but non-templated, classes there will be a build function for each class. The name of
the function reflects the name of the class. Consider a class C1 which contains classes local and

C2; C2 also declares an object of type Local.

The C++2MPI output file is:
TN file C++2MPLh TN

#ifndef CPP2MPI
#define CPP2MPI

MPI_Datatype AIT_build_Local MPI_datatype();
MPI_Datatype AIT_build C2 MPI_datatype();
MPI_Datatype AIT_build C1 MPI_datatype();

#endif

13

iv. Templated basetypes. Syntax is introduced for templated arguments to other templates.
//user input file fif.h:
#pragma MPI START

template <class T3> class T2 {public: T3 y; };
template <class T2> class Tl {public: T2 x; };

// Instantiate Tl as a function of class T2<float>
typedef T1< T2<float> > fif;

// End fif.h

// C++2MPI output file C++2MPI.h:

#ifndef CPP2MPI
#define CPP2MPI

MPI Datatype AIT build T2 float MPI datatype();

/* Note use of the word class to delineate the 'inner' template
instantiation. */

MPI Datatype AIT build Tl class T2 float MPI datatype();

MPI Datatype AIT build fif MPI datatype();

#endif

/* In the calling program, only AIT build fif MPI datatype ()
must be called. */

14

